
Open containers and dynamic
adaptability of services in the EJB

model
Julien Blass

julien.blass@emn.fr

Ecole des Mines de Nantes

Ecole Polytechnique de l’Université de Nantes

Supervisors: Shigeru Chiba, TITECH (Japan)- Jacques Noyé, EMN (France)

Open containers and dynamic adaptability of services in the EJB model – p.1/15



Motivation and goals

Open containers and dynamic adaptability of services in the EJB model – p.2/15



Some definitions

Application servers
AS are component-based products providing
middleware services.

Containers
They encapsulate components and manages their
execution. It is in charge of executing the services.

Services
Low-level platform-specific functionnalities +
high-level business functionnalities

Open containers and dynamic adaptability of services in the EJB model – p.3/15



An exemple of J2EE application

A simple bank application

Accounts

Web container EJB Container
Banker.jsp

Customer.jsp

Customers

Bankers

Owners

Tables
Database

BANK

Web client

Web services Business Logic

BankSession

Customer

Account

Banker

Local application

SessionBean

EntityBean

EntityBean

EntityBean

��� �� �

��� �� �� �

Open containers and dynamic adaptability of services in the EJB model – p.4/15



Objectives of my work
Issues of the present model

The present model is limited. No possibility to
change/add/remove services provided by the EJB
container at execution time.

Goal
Proposing an open container model for EJB-based
applications.

Open containers and dynamic adaptability of services in the EJB model – p.5/15



Related work

Classical EJB platforms
Usually, no way to integrate new services.

Models of adaptable and extensible
components

Open ORB Python Prototype, JavaPOD, JAC (Java
Aspect Components), . . .

Models of adaptable and extensible EJB
containers

Using a meta-object model on the interposition
objects. No dynamic adaptability of services.

Open containers and dynamic adaptability of services in the EJB model – p.6/15



My work

Open containers and dynamic adaptability of services in the EJB model – p.7/15



My proposal

Inserting hooks in the code at load time

Triggering events at specific moment of
execution

Monitoring the application and catching
events

Analyzing events and performing actions

This model permits to satisfy the three mechanisms that

define an open container architecture: interception, coordi-

nation and control .

Open containers and dynamic adaptability of services in the EJB model – p.8/15



Interception: “eventifying the code”

At load time, hooks are inserted in EJBs, using
the Javassist library, in order to trigger events at
specific moment of execution time.
Example: method addCustomer of BankSession

// Renaming the original method:

addCustomer(String name, String password)

-> addCustomerOrg(String name, String password)

// Creating a new method:

boolean addCustomer(String name, String password)

�

EventCall evt = new EventCall(method info);

boolean preResult = MONITOR.invoking(MONITOR.catching(evt));

boolean result = MONITOR.catching(new

EventReturn(preResult,method info));

return result;
�

Open containers and dynamic adaptability of services in the EJB model – p.9/15



Coordination: the monitors

A monitor monitors a class.

The monitor interface permits to add/remove
dynamically a Service.

Services are coordinated following the chain
model.

A service programmer can ask for a specific
order in the services to a monitor.

Open containers and dynamic adaptability of services in the EJB model – p.10/15



Control: analyze and perform

The control mechanism is managed by the services.
Services are implemented by a service developer,
according to a specific interface.
Services can:

receive extended events from a monitor,

analyse the information contained in an event,

perform actions using this information

store/get information in the object referred by the event
(simulates the behaviour of an object monitor)

Open containers and dynamic adaptability of services in the EJB model – p.11/15



A simple example of service

public class TraceEventService implements Service

�
...

public ExtendedEvtCall performing(ExtendedEvtCall eevt)

throws ServicePerformingException

�

out.println("--> Method call of "+eevt.getEvent().getSrcName());

return eevt;

�

public ExtendedEvtReturn performing(ExtendedEvtReturn eevt)

throws ServicePerformingException

�

out.println("<-- Method return of "+eevt.getEvent().getSrcName());

return eevt;

�

...

�

Open containers and dynamic adaptability of services in the EJB model – p.12/15



Remaining tasks

Open containers and dynamic adaptability of services in the EJB model – p.13/15



A remaining issue

Cooperation of monitors
Offering the possibility for monitors to cooperate would
permit to develop entities monitoring the whole application.
Solutions:

Using a meta-meta-level: eventifying services and
monitoring their activities. Costly: implies decreasing
performance.

Using a same service for many class monitors. Limited
and less powerfull than the first solution.

Open containers and dynamic adaptability of services in the EJB model – p.14/15



Remaining work

Integrating the tools I developed for this
model into JOnAS

Hooking the EJBs at load time, when the server
loads the beans

Using JNDI to register the monitors

Load/Unload the services using the JAdmin tool

Evaluating the performances of the model

Open containers and dynamic adaptability of services in the EJB model – p.15/15


	Motivation and goals
	Some definitions
	An exemple of J2EE application
	Objectives of my work
	Related work
	My work
	My proposal
	Interception: ``eventifying the code''
	Coordination: the monitors
	Control: analyze and perform
	A simple example of service
	Remaining tasks
	A remaining issue
	Remaining work

