
Progress on Ptidej

Yann-Gaël Guéhéneuc

File started April 9, 2001
Copy of October 27, 2003

Priorities: 11, 66

Design pattern detection Figure 1 is a summary of the design patterns
found in JHotDraw v5.1 and other frameworks. The table shows the design
pattern primary participants, if the design pattern is implemented in Ptidej,
and if the design pattern has been successfully detected.

Design defect detection Figure 2 is a summary of the design defects found
in JHotDraw v5.1 and other frameworks. The table shows the design design
defect primary participants, if the design defect is implemented in Ptidej, and
if the design defect has been successfully detected.

1

Entities Design Patterns I F
util.Command Command
util.Iconkit Singleton
standard.NullHandle NullObject
standard.SelectionTool State
standard.CompositeFigure Composite X X
standard.ConnectionHandle Prototype
standard.ConnectionTool Prototype
standard.CreationTool Prototype
standard.DecoratorFigure Decorator
framework.Locator Strategy
framework.Painter Strategy
framework.PointConstrainer Strategy
framework.Tool State
standard.AbstractFigure Template Method
framework.ConnectionFigure Strategy, Observer ×, X ×, ×
framework.Connector Strategy, Factory Method ×, X ×, X
framework.Drawing Observer
framework.DrawingEditor Mediator X X
framework.DrawingView Observer, State, Strategy
framework.Handle Adapter
? Chain of responsibility X
? Facade X
? Iterator X
? Memento X
? Proxy X

Figure 1: The Entities column contains the names of the entities that are
participating in the design patterns given in the Design Patterns column. A
check mark in the I column indicates that the design pattern is implemented
in Ptidej, a check mark in the F column indicates that the design pattern is
correctly detected by Ptidej.

2

Entities Design Defects I F
? ?

Figure 2: The Entities column contains the names of the entities that are
participating in the design defects given in the Design Defects column. A
check mark in the I column indicates that the design defect is implemented
in Ptidej, a check mark in the F column indicates that the design defect is
correctly detected by Ptidej.

3

Fixed bugs and implemented features The following list points out the
bugs and missing features in Ptidej (including PADL, Ptidej Solver, . . .),
and the corrections made. (The list is given in reverse-chronological order).

1. When deploying (installing) Ptidej on a new computer, the install pro-
gram does not update path of the .ptidej files. Indeed, it is difficult
with InstallShield to perform such updates. Maybe the .ptidej could
be defined both as absolute and relative paths, so this problem could be
automatically solved (at least) for the examples?

2003/10/24 I Done! The loading mechanism now handle relative paths.

2. A nasty bug was hiding in the PropertyManager class. The installation
could not work on computer other than mine because of the hard-coded
full paths.

2003/10/24 I The PropertyManager now uses the path of its client class
as a base from which to load other resources. This should give much more
flexibility to the installation and also to the call to the constraint solver.
This should also ease the implementation of the Ptidej plug-in for Eclipse.

3. Rename the packages to replace metamodel with pdl (or padl), to match
the package names in Caffeine.

2003/08/20 I Done!

4. Improve error handling when an extension requires missing classes.

2003/08/06 I The constructor of jtu.ui.extension.Repository now
catches NoClassDefFoundError.

5. Unify the frame and panel dimension in Viewer and ViewerPanel!

2003/06/06 I The dimension declared in the ViewerPanel was actually
useless, so removed.

6. When displaying a solution, the entities of the concrete pattern are not
properly connected. For instance, the CompositeFigure class and the
Figure interface are not connected when displaying a solution containing
only these entities (not the AbstractFigure class).

2003/04/04 I The problem was that the re-connection algorithms were
based on the pattern model, not on the “underlying” abstract-level model.

7. In the Eclipse plug-in, the display associated with the primitive factory
known by the control is sometimes out-of-sync. with the diagram editor,
which causes “Widget disposed” error messages.

2003/01/30 I I had forgotten to implement the
DiagramEditor.dispose() method to detach the listeners created
along with each instance of the DiagramEditor class. Thus, when
closing a DiagramEditor, its ghost would still be attached to the
PreferenceStore, causing the exception.

4

8. The methods of SolutionBuilder are not consistent. Some methods take
an instance of Model as parameter, others take an instance of Container.

2003/01/30 I The paramters are now consistent: The public methods
take either Entity or Property or AbstractModel instances as param-
eters. The getSolutionPattern(Solution, AbstractModel) builds an
instance of class PatternModel.

9. In the SimpleDocument of the demo applet, the name of the classes should
be made consistent and. . . proper english!

2003/01/15 I Done.

10. The preference panel of the Eclipse plug-in, the control view, and the
diagram editor should be connected so that when one changes, the other
ones reflect the changes.

2002/12/27 I The ControlView and the DiagramEditor now both uses
the preference store to set and to get visibility values, which keep them
all in sync.

11. I need to add an extension mechanism for Ptidej: I want to call
the adjency matrix display from the OADymPPaC projet (Mohammad
Ghoniem), but I don’t want to hack the viewer, I need something more
robust that could also work for the ConstraintResultsFrame and in the
Eclipse plug-in as well!

2002/12/21 I I added a whole set of classes: Extension is an interface
that any Ptidej extension must implement; Repository is a singleton
class that manages the extensions. I now use this mechanism to make a
link with OADymPPaC! The replacement of ConstraintResultsFrame
should be done soon. . .

12. The algorithms of the *Inheritance* constraints were buggy! But the
bugs did not show up with Claire 2. . . I was enumerating through the
entities only if they had at least one super-entity!

2002/12/21 I Done. I fix the bugs up! (Well, I have more confidence
with Claire now. . . Thank also to the JUnit tests!)

13. The display would be much nicer if we could show/hide assocation, ag-
gregation, and composition relationships as well as ghost entities, all in-
dependently!

2002/12/15 I Done! And it’s way better!

14. It should be possible to load a single class-file at a time in addition to
complete directories and jar file.

2002/12/15 I A addFile() method has been added to the
ProjectViewerPanel.

5

15. In the constraints and constraint tests, I should replace the word “class”
with “entity” to be consistent.

2002/12/3 I The names are now consistent.

16. It is possible to create a Ptidej project with no name (or a blank name).

2002/10/12 I The newproject() method now handles blank name by
not creating project when a blank name is provided.

17. The ContainerAggregation.recognize(...) method is not flexible
enough. For example, in JUnit, it does not recognize some container-
aggregation relationships because of missing remove(...) method or
different list of argument. I need to introduce a mean to handle those
extra-cases.

2002/10/12 I It is now possible to load (after loading a project) a specific
.pdl file that specifies some extra relationships among classes and some
modifications to the current model. Using this mechanism, it is possible
to add extra association, aggregation, or composition relationships and to
convert aggregation relationships into composition relationships.

18. Improve the Ptidej–Caffeine integration by specifying the content of
Caffeine files (.caffeine), which contain the results of the extraction of
behavioral information.

2002/10/12 I The integration between Ptidej and Caffeine is now
based on the mechanism to add extra information to a model using .pdl
files.

19. When building the graphic entity, all knowledge and binary class relation-
ships are not displayed.

2002/09/18 I I was using the String.indexOf(String) method with-
out taking care of the end-of-line character. If the text already contained
TestListener\n and I added Test, Test would not be added because it
is already present. . . I now test for the presence of Test\n

20. An ArrayIndexOutOfBoundException occurs in the
InheritanceClusterLayout algorithm, when displaying concrete
patterns which handle interfaces.

2002/08/05 I The problem came (again!) from the interface-
management algorithm.

21. The pattern visitors and listeners must distinguish between Aggregation
and Composition relationships and ContainerAggregation and
ContainerComposition relationships.

2002/08/05 I All meta-model dependent visitors and listeners are now
up-to-date.

6

22. For size complexity, replace the AC4 ignorance constraint by constraints
opposed to the knowledge, association, aggregation, composition (aware-
ness) constraints.

2002/08/23 I I try out this solution, however the solutions found are
different even though the opposed constraints strictly declare the comple-
mentary set of couples of the normal ignorance constraint.

2002/08/30 I We fix the problem with Narendra Jussien: When I cre-
ated the not feasible-AC4 constraint, the list of supports was not built
correctly and was actually “as-if” it was a feasible constraint.

23. When loading the JDT/Core, the recognition attempts to add some
container-aggregations twice.

2002/08/29 I The problem was only that I did not append a unique
identifier to the name of the container-aggregation relationships. When
a class implements more than one container-aggregation relationship, the
unique identifier distinguishes them.

24. The recognition algorithm of class PatternIntrospector increase the
number of entities to recognize as projects are loaded.

2002/08/29 I The bug was in fact in the
ProjectLoaderViewerPanel.newProject() method, which added a
new instance of PatternStatitics to the ListenerManager each time a
new project was created.

25. The InheritanceClusterLayout algorithm still has some problems with
Ghost entities. It throws an exception when loading the JDT/Core plug-
in.

2002/08/29 I The problem actually came from the meta-model: When
recognizing an interface, I wasn’t adding its ghost super-entities into the
model. So, this interface had a inheritance-depth of 0, as a ghost entity.

26. When building a pattern from source files, the algorithm connecting classes
and interfaces fails to connect classes with their super-interfaces since the
introduction of the Ghost entity.

2002/08/28 I The problem came from the ghost entities. When recog-
nizing an entity, say a class, the algorithm created a ghost entity matching
the super-class of the recognized entity. Then, the real super-class was an-
alyzed and it tried to update the first entity: The update failed because
an actor (the ghost entity) with the same actor ID already existed! From
now on, before adding a new super-entity (class, interface, or ghost), I
make sure to remove any other entity with the same actor ID. This is suf-
ficient because the being-added super-entity is necessarily more real than
the potential existing ghost entity.

7

27. The constraint-relaxation mechanism does not seem to perform what it
is supposed to: When a constraint is relaxed, the constraint should be
replaced by a related constraint of lesser weight.

2002/08/27 I The CombinatorialAutomatiSolver performs the com-
putation of the solutions using both a combinatorial algorithm and a
constraint-replacement algorithm. The tests on the Composite design
pattern seem to valid its implementation (jtu.solution.test.examples
package).

28. Distinguish among problems and solvers. Problems may be CUSTOM
or AC4, solvers may be AUTOMATIC, COMBINATORIAL AUTOMATIC, or
SIMPLE AUTOMATIC.

2002/08/27 I The ConstraintViewerPanel now offers five different
checkboxes, which allow the different valid combinations of type of prob-
lem and of constraint solvers.

29. Distinguish between the Aggregation and Composition relationships and
some new ContainerAggregation and ContainerComposition relation-
ships.

2002/08/25 I I added two new elements to the meta-model:
ContainerAggregation and ContainerComposition. I also added
graphic constituents to distinguish among them. The symbols now are:

Knowledge : -k-->
Creation : -*-->

Association : ---->
Aggregation : []-->

Container aggregation : <>-->
Composition : [#]->

Container Composition : <#>->
Specialization : -|>-

Implementation : -|>-

30. I need to connect the interfaces with the java.lang.Object class if they
have no other super-interfaces. (This is a simple bug-fix in PatternsBox,
however, this bug-fix introduces a bug in the layout manager. . .)

2002/08/24 I This was a nasty bug in the InheritanceClusterLayout
class. I was moving interfaces all the way up in the display hierar-
chy, then, when creating the tree-nodes, I could not find the super-
entity of the interfaces (java.lang.Object) because it had not been
added yet! Fortunately, the bug was very easy to fix. . . See class
InheritanceClusterLayout.

31. The refactoring in PatternsBox introduced a bug when linking a PClass
with its super-PInterfaces.

8

2002/08/23 I I had broken the connection mechanism between a class
and its super-interfaces in the PClass.recognize(...) method. Now it
works fine. (I added a JUnit test.)

32. The domain generated by the different PaLMDomainGenerators does not
distinguish among knowledge, association, and aggregation (of cardi-
nality 1) relationships: These three relationships are enforced by the
makeKnowledgeAC4Constraint constraint. I need to distinguish these
relationships to improve design defect detection such as the Redundant
Transitivity pattern.

2002/08/22 I The PaLMAC4DomainGenerator now provides different
constraint for the knowledge, association, aggregation, and composition
relationships. The different detection algorithm have been rewritten to
use these constraints. I also implemented unit tests for the Ptidej con-
straint solver.

33. The computation of the message types (in class PLink) needs some heavy
refactoring, with regards to Stéphane Ducasse et al.’s book (see pattern
10.3) and to the corresponding unit tests.

2002/08/22 I I first re-implemented the algorithm using pattern 10.3.
However, the problem was much more complex with regards to bytecode
analysis, so I implemented a real stack-based bytecode analyzer, which is
much robust and accurate. I also implemented several unit tests dedicated
to the PatternIntrospector class.

34. Find out why the computation of the message links loops over and over
again on the same entities.

2002/08/22 I The problem was that the relationship recognition mech-
anism was not included as a PatternElement in the reverse-engineering
algorithm (in PatternIntrospector) but was called by the different el-
ements (such as PAssociation, PAggregation, . . .) and thus was called
multiple times. From now on, the PLink class is included in the reverse-
engineering algorithm and the other elements do not super-call the rela-
tionship recognition mechanism.

35. The domain generated by the PaLMAC4DomainGenerator is too big, for
example for JUnit, with regards to the makeNotEqualAC4Constraint
and makeEqualAC4Constraint.

2002/08/14 I I now use constraints in “intension” (such as in the custom
algorithm) to limit the size of the generated domain.

36. Rewrite the constraints to use the AC-4 algorithm with explanations.

2002/08/13 I All pattern constraint declarations now possess their AC-
4 with explanations counterparts. Also, I implemented a set of JUnit
tests to check the results of the constraints.

9

37. Constructors declaration are not handled by PatternsBox.

2002/08/13 I Constructors are now analyzed by PatternsBox.

38. The definition of the interface for jtu.ui.primitive must be made con-
sistent: All the methods of the abstract factory must accept a parameter
RGB color.

2002/08/07 I Done.

39. The MultiRepresentation mechanism must be reviewed and cleaned up.
Especially, with regards to redundant information about the instances of
ClassLoader and of the instances of ClassLoader known by the instances
of PatternIntrospector.

2002/08/07 I Instances of the MultiRepresentation are using a
Method factory pattern.

40. When loading the class files (from a JAR) of the JDT/Core plug-in, Pat-
ternsBox and Ptidej eats away more than 150Mb! Need to improve
memory footprint!

2002/08/06 I I used JProfiler from EJ-Technologies, it is great! I an-
alyzed the analysis and display of large framework and found several places
for improvements. From now on, it should be possible to load in Ptidej
frameworks up to thousands of classes and interfaces and ten-thousands
of relations. Correcting this limitation involved numerous refactoring and
corrections, PatternsBox and Ptidej are in better shape than ever now
(but bug-free code does not exist. . .).

41. Need to refactor the method ConstraintResultsFrame.build().

2002/08/06 I Done.

42. When loading files and the path does not exist (as in a project file), the
TypeLoader.loadSubtypesOfFromDirInto(...) method just throws a
null-pointer exception: This behavior must be improved!

2002/08/06 I The problem was the wrong test that only checked the
length of the list of files, not its nullity.

43. When concrete patterns are loaded, the group solution tip (or group solu-
tion pattern) is built once and for all, using the element visibility of the
source code model at the time of the loading. If the visibility changes, the
group solution pattern is still displayed the old way.

2002/08/05 I From now on, changing the visibility of the code also
changes the visibility of the group solution patterns.

44. The visibility of the solution patterns should be modified according to the
visibility associated with the source code. (The visibility of the solution
patterns should not be set once and for all at the loading of the concrete
patterns.)

10

2002/08/05 I Done. (See previous bug.)

45. Cloning a subset of the pattern requires cloning the whole pat-
tern, which is memory-consuming. Need to implement a bet-
ter algorithm. See methods PEntity.performCloneSession() and
PClass.performCloneSession().

2002/08/04 I The cloning of a subset of a pattern now follows the
cloning protocol.

46. There is a bug when building the solution pattern for the Composite design
pattern on jtu.tests.composite2. The first time the solution pattern
is built, the class ParaIndent is not connected with the class Paragraph.
Only the second time that the solution pattern is displayed.

2002/08/04 I Now that the cloning protocol is strictly followed, the
problem is fixed.

47. For the moment, everything is based on the reflection API of Java.
However, using the reflection API presents several shortcomings. First,
we load class through an instance of the class ClassLoader, thus the
ClassVerifier of the JVM processes each class and the JVM executes
its static initializers, which are both useless. Second, each class must be
loaded along with all its dependent classes, which prevents us to analyze
subset of large framework, such as Eclipse.

2002/07/28 I I suppressed all reflection-related mechanisms in the anal-
ysis of classes. From now on, classes and interfaces are represented as
instances of class ClassFile from CFParse.

48. ACRViewerPanel does not memorize all the packages that have been
loaded: This is a problem when creating the MainRunner.

2002/07/28 I I now use instances of ClassFile to represent class files.
I also memorize the list of paths and jar files from which I loaded class
files.

49. Improve the algorithm related to the main path and main package in the
class ACRViewerPanel.

2002/07/28 I Done.

50. Implement New project, Load project, and Save project algorithms.

2002/07/28 I Done.

51. The method ACRViewerPanel.setCurrentPackageAndPath(String)
needs some heavy refactoring!

2002/07/28 I Done. This method is not needed anymore.

11

52. Allow loading dynamic information from a random file.

2002/04/08 I The Load dynamic information feature now possesses
two behaviors: First, it loads the properties of the selected constituents;
Second, if no constituent is selected, it opens a dialog to select of file.

2002/07/04 I Lofti Hazem found a bug when loading dynamic
information from the example files. I had changed the speci-
fication of the dynamic information file without modifying the
ACRViewerPanel.loadDynamicInformation(DEntity, Properties)
method. I also modified the documentation accordingly.

53. The layout is not that great . . .

2001/07/28 I Two new layouts are now available. The latest (and more
efficient) one sorts entities according to their depth in the inheritance tree,
and then move the subclasses as close as possible to their superclass by
waves; i.e., one inheritance level at a time, ensuring a better looking layout
with as few inheritance (superclass) links crossing as possible.

2002/07/01 I The new InheritanceClusterLayout makes sure the
class-hierarchy tree is cleanly displayed and displays interfaces first.

54. Improve and test the creation of builds with InstallShield.

2002/07/01 I Done. Thanks to Eclipse [2] capabilities, I manage from
the very same workspace the projects, their source files and class files, and
the InstallShield files. Thus, whenever I build a new version of Ptidej,
InstallShield always uses the latest class files and resource files.

55. When changing the view from one model to another, the associated in-
stance of ClassLoader is not changed. This prevents from adding different
packages in different projects in various order.

2001/04/20 I This is now corrected: The TriRepresentation class
is renamed MultiRepresentation and it can hold any kind of spe-
cific values (in a hashtable). The instances of ClassLoader and
PatternIntrospector are now set according to the model currently dis-
played. The system complexity, when calculated, also changes according
to the current model displayed. However, the MultiRepresentation must
be improved.

2002/04/03 I There is now a real MultiRepresentation class, which
contains the data per view (pattern, complexity, solutions, . . .) and which
can be extended. This new representation also helped me in improving
the complexity computation and display mechanism.

56. The call to the constraint solver is still not working correctly. Should try
without the batch file.

2002/04/03 I This bug was hard to fix! There were several problems
counteracting this single effort:

12

• The Claire code for the constraint solver needed some clean-up.
There is now one and only one global variable, PtidejResourceDir,
which contains the directory where the resource file is to be
found. This variable is set by Ptidej UI in the instruction file
(Instructions.cl), file given as parameter to the constraint solver
(Ptidej.exe). This global variable must be removed in the future.

• The instruction file is now unique, whether Ptidej Solver is inter-
preted or compiled, it uses the same file.

• The resource file did not contain a Claire-compliant
path for the Ptidej Solver resource direc-
tory. The path must not be: "C:/Documents and
Settings/Yann/Work/Ptidej Solver/Ptidej/", but:
"C:/Docume∼1/Yann/Work/Ptidej∼1/Ptidej/".

• The constraint solver looped when searching the Composite on the
framework JUnit v3.7.

2002/04/07 I Now that this bug is fixed, the automated tests work
perfectly, thanks to JUnit v3.7.

57. When calling the constraint solver, get the stdout of the process and
display it as a feedback for the user.

2002/04/07 I Using the OutputMonitor from Caffeine, I now display
the output from the constraint solver in the console.

58. Add a PatternListener mechanism to listen to the construction of pat-
terns.

2002/04/02 I Done. I need to clean up the PatternProperty
class though, to make sure I do not duplicate the field Vector
listOfPatternListeners inappropriately. Also, the method
Pattern.removePEntity(PEntity) does not detach the listeners of
the removed entities. (There is a similar problem with the elements.)

59. Rename the class PatternRootElement into PatternConstituentRoot.

2002/04/02 I Done. However, a better name (to discuss with Hervé
Albin-Amiot) could be PatternConstituent.

60. The solutions found after a constraint has been relaxed are not quite what
they seem: So far, constraint are cumulatively removed from the problem
at hand. What we need is that a constraint is removed, the solutions to
the problem are calculated, then this constraint is re-added and another
constraint is removed, and so on and so forth.

2001/11/27 I Using the latest PaLM version (v1.07), a combinatorial
constraint solver algorithm has been implemented. This solver algorithm
remove all the constraints in a combinatorial fashion. Thus, all the possible
combination of constraints are explored.

13

61. When creating the solutions, the patterns associated with each of the solu-
tion are created up-front, which is time- and (very) memory-consuming.

2001/08/30 I The SolutionBuilder provides two methods:
First, getSolutions(), which builds the solutions from the con-
straints and a source code; Second, getSolutionPattern(),
which builds a solution pattern from a solution. The
method SolutionBuilder.getSolutionPattern() is called in
GroupSolution.setSelected() when (and only when) needed.

62. Refactor the graphic framework kernel and primitives to implement an
abstract factory and factorize graphic-framework independent mechanism
from the AWT implementation to reuse in the Eclipse implementation.
This must allow to have different implementation of the primitives (for
example, AWT and SWT).

2001/08/15 I Done. The project Ptidej UI defines a package
jtu.ui.primitive that defines a set of interfaces for the graphic wid-
gets. The implementation-specific classes are located in the Ptidej UI
Primitives AWT and Ptidej UI Primitives SWT projects.

63. Because Swt does not have a GC.translate() à la AWT, need to add
a pair of offset coordinates to each paint() method of the graphic kernel
and of the graphic primitives.

2001/08/13 I Done.

64. When loading or adding a package, only class files should be displayed by
the file dialog.

2001/08/12 I It seems that there is a bug in the class FileDialog: The
instance of the class implementing FilenameFilter is never used. To filter
out the file names that have not the desired extension, I use the method
FileDialog.setFile(); eg., fileDialog.setFile("*.ptidej");.

2001/08/10 I The good solution is actually to provide the in-
stance of class patterns.util.ClassLoader (used to load the Entity,
Element. . . classes) with the instance of the current class loader (used to
load the PatternIntrospector class), as parent. The Method.invoke()
method checks the parent–child relationships and does not complain, be-
cause it is acceptable.

65. The XCommand filed must be broken into multiple lines, and the solution
tip must display each of its lines with the correct indentation.

2001/08/04 (IJCAI 2001, Seattle) I The mechanism to break the
XCommand on multiple lines was there. Only the definitions of the con-
straints needed to include \n and \t in their XCommand declarations.

66. The print feature does not take into account the visibility settings from
the ViewerPanel, by default, there are no visible elements.

14

2001/07/31 I The visibility is now the same as the current source code.

67. The layout algorithm should be based on pass according to the depth on
the inheritance lineage of the entities.

2001/07/30 I The new layout InheritanceDepthLayout3 implements
an algorithm based on inheritance depth and on passes.

68. The pattern displayed as tip for a (complete or distorted) solution has no
visibility set (thus, no graphical elements or names were displayed, beside
the entity names).

2001/07/30 I The solution pattern (i.e., the concrete patterns) has the
same visibility as the corresponding source code at the moment the solu-
tions are loaded.

69. When showing a GroupSolutionTip from the ConstraintResultsFrame,
the size of the Canvas is not re-calculated.

2001/07/30 I The instance of ConstraintResultsActionListener de-
fined in method MACRViewerPanel.displaySolutions() takes care of ad-
justing the size of the canvas.

70. When changing the source displayed, the visibility of the entities and
elements of the new source being displayed is not updated.

2001/07/25 I The class MACRViewerPanel now implements a method
displayCurrentPattern(), which takes care of setting the appropriate
visibility on the source code being displayed.

71. The communication mechanism between the ViewerPanel and any exten-
sion (for instance, ConstraintResultsFrame) is too primitive. Need to
add an observer pattern (define an event and a listener interface).

2001/07/25 I The ViewerPanel now defines a listener SourceListener
and an event SourceEvent.

72. Improve the communication between the ConstraintResultsFrame and
the MACRViewerPanel classes. Maybe a notification from the source choice
combo-box would be sufficient?

2001/07/25 I The methods dealing with the source code being dis-
played in the ViewerPanel (such as ViewerPanel.addPattern(),
ACRViewerPanel.loadConstraintsInformation(),
ACRViewerPanel.loadDynamicInformation(), and
ACRViewerPanel.removeAllConcretePatterns()) take care of sending
the appropriate instance of SourceEvent to the instances registered as
SourceEventListener.

73. The concrete pattern displayed with a chosen solution is incorrect.

15

2001/07/23 I The problem was that the solutions were sorted after the
solution patterns were built, thus leading to inconsistencies between the
array of solutions and the array of solution patterns.

74. The number of links found in the class jtu.tests.mediator2.Mediator
is wrong.

2001/07/23 I The problem was in the method PLink.recognize().
The algorithm matching the method at hand with the correspond-
ing method information (extracted by CFParse from the class file)
was based solely on the method name. In the case of the class
jtu.tests.mediator2.Mediator, the methods have the same name op-
eration but different parameters. The algorithm now checks the method
complete signature.

75. Improve the loading of files to remove the unnecessary selection of the
main directory.

2001/04/23 I From now on, loading or adding a package consists in
selecting a single class file within the package to load.

2001/07/22 I The notion of project has been added to ease the loading
of files

76. Abstract from ACRViewerPanel the algorithm to build solutions.

2001/07/22 I The algorithms to generate constraint results (i.e., to solve
the CSP) and to build the solutions from the results are now located in
the SolutionBuilder class.

77. The field listOfClasses contains only null elements when creating an
instance of class PatternIntrospector, this should not be so: To be
verified.

2001/07/21 I The problem was related to the new representation in the
ViewerPanel: A class loader was created, but a different class loader was
used to load the class files from the instance of PatternIntrospector.
Now, the correct (and corresponding) instance of ClassLoader is used
along with the instance of PatternIntrospector.

78. When lots of entities are loaded, it is difficult to find the one looked for.
Need to add a goto function that would localize the entities and focus the
window on it.

2001/07/20 I A new mechanism has been introduced. The
ViewerPanel defines two methods addSourceListener() and
removeSourceListener() to notify instances of any class that want
to know when the source code loaded and shown changes. This
mechanism is used to implement the ConstraintResultsFrame. The
ConstraintResultsFrame displays the constraint results associated with
a given source code, and allows to show/hide results, and to focus on a

16

specific actor. (This ConstraintResultsFrame also provides a listener
ConstraintResultsActionListener.

79. The display of solutions must be improved: First, the pop-up comment
displayed is taken in a random order, a tab-like mechanism should be
added; Second, when a solution contains lots of entities, it is difficult to
grasp what entities belong to the solution and their relationships.

2001/07/20 I This problem is partially solved with the
ConstraintResultsFrame. Still need to implement a tab-like mechanism,
though.

80. The solutions built from the constraint results contain redundant and
useless information: When a solution at 100% exists, distorted solutions
with the same actors also exist (“Qui peut le plus, peu le moins”), these
distorted solutions constitute noise and must be removed.

2001/07/19 I The method SolutionBuilder.getSolutions() now in-
cludes an algorithm to remove distorted solutions that are equivalent to a
complete solutions.

81. Track and fix the problem of resources sharing the same name be-
tween the projects PatternsBox and Ptidej. Refactor the class
PropertiesManager and make clear where and how the resources should
be accessed.

2001/10/19 I Done. The problem came from my mis-understanding
of the use of the getResourceAsStream() method. There is a difference
between:

• clientClass.getResourceAsStream(...).

• clientClass.getClassLoader().getResourceAsStream(...).

The former looks for the resource in the directory corresponding to the
class path of the clientClass, while the latter looks for the resource in
the common directory, corresponding to the class path of the instance of
ClassLoader.

82. A button to remove at once all the concrete patterns should be imple-
mented!

2001/07/18 I Done.

83. Remove method getClasspath() from the abstract models in the repos-
itory.

2001/07/17 I The recognize() methods no longer take an instance of
Pattern as argument, but an instance of PatternIntrospector. This
modification makes more sense and makes the code cleaner. The class
path is now set within the instance of class PatternIntrospector and is
queried from it.

17

84. The algorithm of structure modification in
ACRViewerPanel.modifyStructure() did remove only the related
groups with same percentage and parameter names and values. This let
a lot of noise.

2001/07/17 I The noise is now gone: Groups are now related only by
parameter names and values.

85. The font used in the buttons for AWT is too big. And the button con-
structor and display algorithms are too rigid.

2001/07/16 I If available, the font used now is Tahoma 9pt, and the
button algorithms support any font and size.

86. Clean up the listener / actionPerformed() mechanism.

2001/07/15 I Thanks to Hervé Albin-Amiot, who explained me all what
must be known on listeners, there is now no more useless or dubious
actionPerformed() calls.

87. For an unknown reason, the constraint results for the Composite pattern
possess one solution at 100%.

2001/06/30 I This problem is resolved using the new 1.0 versions of
Choco and PaLM.

88. The method PEntity.listInherits() should (maybe) return a clone of
the inherits vector, to prevent unwilling modifications.

2001/06/18 I Done.

89. Because of the methods clone() defined on class Pattern, classes PEntity
and PElement do not update correctly the links among cloned PElements
and cloned PEntities.

2001/06/18 I The meta-model now implements an extended
cloning mechanism. The new mechanism includes a three-step
cloning algorithm: startCloneSession(), performCloneSession(), and
endCloneSession(). These methods return void, to use them, see
Pattern.clone(). The idea is that a pattern may be cloned, but a
constituent of a pattern (PElement or PEntity) may not be cloned in-
dividually: It does not make sense to clone a PMethod if the rest of
the pattern is not cloned too. It is actually a risk: To clone a single
constituent on an individual basis may prove to create duplicates with
references on old objects. . . Thus, only the Pattern class implements
the Cloneable interface. The constituents of the pattern implements the
CloneablePatternConstituent interface. This interface provides three
methods: startCloneSession() is somewhat equivalent to a shallow copy
of the constituent. After this protocol is executed, all constituents are
guaranteed to be shallow-copied. No assumption is made about the links
among constituents. performCloneSession() updates the links among

18

constituents, using the isCloned() and getClone() methods. After the
execution of this protocol, all the links are guaranteed to be up-to-date,
somewhat like a deep copy. endCloneSession() finishes the updates and
cleans the possible temporary values, mainly it sets to null all the clone
instance variables.

90. Complete PLinkingMethod.computeObjectReferencesNames(...).

2001/06/18 I The whole link management mechanism has changed.
Two reasons: First, to factor code in the hierarchy; Second, to improve
the detection of associations, aggregations, and compositions, and to make
the algorithms more flexible.

91. Distinguish visuals among creation links, reference links, delegation links,
association, aggregation and composition.

2001/05/06 I The code is:

Knowledge : -k-->
Creation : -*-->

Association : ---->
Aggregation : <>-->
Composition : <#>->

Specialization : -|>-
Implementation : -|>-

92. Allow a class to have more than one composition. (Create a list of list
and handle within the constraints system.)

2001/05/06 I The property componentsType is a list of PEntity and
the property components is a list of list of PEntity.

93. The method DHierarchy.toString() prints the symbol <?>-> instead of
-|>-.

2001/05/06 I This is now corrected: The DGraphicalElement
has been refactored, the toString() method is defined into class
DGraphicalElement and calls the getName() method.

94. The current meta-model is not fuzzy enough to handle the detection of
distorted implementations of associations, aggregations, and compositions.
For exemple, if the field holding the reference appears to be protected,
no association would be built.

2001/05/01 I The modification of the hierarchy of PElement and the
addition of a new algorithm (PLink.recognize()) partially (if not to-
tally?) address this problem. This solution needs a careful review and
additional testing.

19

95. The method PLink.computeMessageTypes() does not correctly handle
the cardinality of return type and parameters. This method needs a serious
re-factoring.

2001/05/01 I The method has been re-factored: Tons of modifications!
It seems to work fine, but it needs to be reviewed by Hervé Albin-Amiot,
and to be tested on more cases.

96. Put all the buttons in a scrolling panel.

2001/04/23 I The panel containing the buttons is now embedded into
an instance of the ScrollPane class.

97. In ACRViewerPanel, replace text- and button-creation mechanisms
with reflection.

2001/04/23 I The ViewerPanel class handles the addition of new wid-
gets, buttons, or separators.

98. There is a problem of uniqueness among constituents of a DPattern. When
cloning a pattern and building a new DPattern, some links are kept
on non-existent DEntities. This problem comes from the static field
DPatternRootElement.backwardLinkPtoD. This field must be removed.

2001/04/23 I The static field has been removed. Now, instances of
DEntity point to their enclosing instance of DPattern. An instance of
DPattern knows all its instances of DEntity. Along with this modifica-
tion, some methods have been removed (getSuper() and hasSuper(),
among others) to simplify the framework.

99. The Ptidej Solver meta-model does not differentiate between knowledge
links and creation links. The distinction could improve the detection of
the Factory Method pattern.

2001/04/20 I The Ptidej Solver meta-model has been enhanced. The
meta-model now distinguishes among superEntities, componentsType,
components, knownEntities, unknownEntities, and createdEntities.

100. The InheritanceConstraint does not correctly handle all the possible
solutions.

2001/04/20 I This is now corrected: The methods awakeOnRemove()
and awakeOnRestoreVal() call directly awakeOnEnum(). This is very in-
efficient, but it will stay so until I meet with Narendra Jussien.

101. The relations of knowledge1 are not built among interfaces. For
example, interface framework.Figure possesses a method with
framework.Connector for return type, but no knowledge link is built

1An entity A knows another entity B if A possesses a method that refers to B (in the method
body, as return type, . . .). This relation is called knowledge link or acquaintance in [1].

20

between these interfaces. If the knowledge link existed, Factory Method
concrete patterns could be detected.

2001/04/19 I This is now corrected: Instances of PLinkingMethod are
built for interfaces, and the algorithm manages return types and parameter
types. The algorithm also distinguishes among primitive types.

102. Factory Method pattern. The InheritanceConstraint and
StrictInheritanceConstraint only deal with direct super-classes.
These constraints must handle super-interfaces as well, to improve the
results of the detection of the Factory Method pattern.

2001/04/19 I The InheritancePathConstraint deals with direct
super-entities and super-entities all the way up to java.lang.Object.

103. Method addPackage() does not allow to load packages from different root
directories.

2001/04/18 I The management of the ClassLoader has been improved:
One instance of ClassLoader is created with Load package. This in-
stance of ClassLoader is used for the following Add package method
calls.

104. The InheritancePathConstraint does not correctly handles all the pos-
sible solutions.

2001/04/14 I The constraint now gives all the correct answers (and only
them).

Bugs and missing features The following list points out the bugs and miss-
ing features in Ptidej (including PADL, Ptidej Solver, . . .).

1. The interface framework.DrawingEditor participates indirectly to
the Mediator pattern (because framework.DrawingEditor is an in-
terface) through the class standard.DrawApplication and class
standard.DrawApplication inner classes. Inner classes should not ap-
pear in the Ptidej Solver meta-model, the relations they define should
be included in the enclosing class.

2. The interface framework.DrawingEditor participates indirectly to the
Mediator pattern, but it should be included into the results because the
real mediator object, framework.DrawingEditor, implements it.

3. Singleton pattern. Looking at its implementation, the util.Iconkit
class does not have a private constructor: An instance of the class
util.Iconkit is created when initializing the application. This in-
stance is stored in a field but never accessed again. All other
accesses to util.Iconkit are realized through the static method
Iconkit.instance(). The Ptidej Solver meta-model should include
method-level information (such as method kinds (constructor, method),
method modifiers, method name?, . . .).

21

4. State and Prototype patterns. The Ptidej Solver meta-model should
include, maybe, method-body information.

5. Factory Method and Template Method patterns. The Ptidej Solver sys-
tem should include a mechanism of automatic fall-back. A mechanism
of fall-back would allow the relaxation of a constraint by removing this
constraint and by adding a new and related constraint. For example, if
the CompositionConstraint cannot be satisfied, this constraint should
be removed and replaced by an AggregationConstraint, which could be
itself replaced by an AssociationConstraint constraint2.

6. Observer pattern. The Observer pattern implemented by the Drawing
and DrawingChangeListener classes is distorted. The StandardDrawing
class notifies its observer, StandardDrawingView, through the
DrawingChangeListener interface, but the StandardDrawingView
class does not directly query the new state from the StandardDrawing
class. The StandardDrawingView class uses the DrawApplication class
as an intermediary. (The DrawApplication class aggregates an instance
of StandardDrawingView and knows about StandardDrawing.)

7. Memorize within the meta-model the entities part of an association, an
aggregation, or a composition not just the superclass of them all.

8. Improve printing (reduce diagram size if possible).

9. When printing, for some reasons, the font used is bigger than the one
displayed on screen.

10. Compute dynamic links.

11. In class Pattern, problem of duality between actor and PEntity. The
problem is even deeper than that: As discussed with Hervé Albin-Amiot, it
appears that there is a missing identifier in PatternsBox. For example,
in the Composite pattern: The actors Composite and Component are fixed,
while actors of type Leaf may be added; i.e., in the abstract model of
the Composite pattern, an actor ZLeaf may be added, using methods
addLeaf() and removeLeaf(). But, when walking the list of actors using
the getActorID() method, the actors found are:

• Composite

• Component

• Leaf

• ZLeaf

In theory, actors Leaf and ZLeaf are the same. This is an important point
when it comes to deal with those two actors using the available properties

2The AssociationConstraint and the RelatedClassesConstraint are identical.

22

related methods of the patterns; i.e., addLeaf() and removeLeaf(): In-
deed using the available methods, it is impossible to act on ZLeaf. Thus,
we must introduce three levels of identifiers:

• At the meta-model level, getActorType() identify a unique type
of actor. For example, Composite or Leaf. The methods related
to the properties of an abstract model (such as addLeaf() and
removeLeaf()), discovered using the introspection mechanism, work
at this level: They work on the type of the actors.

• At the abstract-model level, getActorID() distinguishes among ac-
tors of same or of different types. For example, Composite, Leaf,
and ZLeaf. (Would it make sense to have methods working on the
actors depending on their IDs?)

• At the concrete-model level, getName() gives the concrete name
associated with any actor (w.r.t. getActorID()). For example,
MyComposite, MyLeaf, and my MyZLeaf.

12. The method getPosition() and getDimension(), in the graphic frame-
work, should be made uniform with the method getLocation() and
getSize() (respectively) from AWT.

13. Need a nicer display algorithm for PLinkingMethod, where origin and
target entities are the same.

14. The method DPattern.getConstituents() could be better used. To be
removed or to be improved.

15. When an entity possesses an association, the solution displayed throws a
NullPointerException.

16. The calculus made in the graphic framework (especially in classes
DGraphicalElement and DSymbol) must be rewritten (to simplify and
to use only integers, if possible).

17. The current algorithms in PLink.recognize() and
PAggregation.recognize() do not verify the non-existence of the
link instance2 7−→ instance1 (constraint ¬ instance2 7−→ instance1).

18. Make a more extensive use of peNil in Ptidej Solver.

19. The constraint for the starred Composite pattern provides inconsistent
results: Solutions with only a Component and a Composite (no leaves).

20. The list DPatternRootElement[] in the class DPattern contains instances
of DEntity and of DElement all mixed together. The list should contains
only instances of DEntity: It makes more sense and simplifies several
algorithms. However, this is not such an easy modification. Indeed, mixing
instances of DEntity and DElement helps in displaying first the instances

23

of DElement and then the instances of DEntity, creating a nice display.
Removing the instances of DElement requires to display the instances
of DEntity (and their instances of DElement) and then the instances of
DEntity alone, to write on top of the displayed instances of DElement.

21. Redundant pieces of information are displayed when displaying links or
associations.

22. The removal of related solution groups should be based on the components,
not the parameters of the transformation? Well, maybe not. . .

23. Refactor the super-entities reconstruction mechanism in class
SolutionBuilder.

24. Decouple Ptidej and its viewers from PatternsBox Java-dependent
classes, for later Claire and C++ versions.

25. The inclusion of java.lang.Object in the listOfPEntities may be an
issue when solving the constraints. For example, in the Factory Method
pattern, the very presence of java.lang.Object generates a set of unin-
teresting solutions. However, for other patterns, such as Composite (?),
the presence of java.lang.Object may be required to obtain interesting
solutions.

26. Should move the class patterns.WindowCloser to the package
patterns.util.

27. Visibility of names and graphical elements is only set for entities.

28. For some reason, when displaying JHotDraw, the classes
LineConnection -<|- PolyLineFigure and TextFigure -<|-
AttributeFigure are not displayed as close as possible of their
super-classes.

29. Implement the Fold/Unfold All menu in the ConstraintResultsFrame.

30. Add a progress bar when loading a project. This requires to de-
fine a new progress listener and a new progress event for the class
PatternIntrospector. The class PatternIntrospector would then no-
tify its listeners when some progress is made.

31. Implement the Save image button to save the display as a Bmp or Jpeg
image on the disk.

32. The exceptions thrown by the instance of ClassLoader are too restrictive
to load only a subset of an application.

33. In the ConstraintResultsFrame, allow the use of the keyboard to go up,
down, at the beginning, and at the end of the list.

24

34. In the Ptidej Solver, add a timing pre-/post-mechanism to record the
number of run of a method and the time taken depending on the number
of entities and relations.

35. Compute and decrease the constraints complexity.

36. After cloning a subset of the pattern, the super-entities and elements that
do not exist or do not point on a entity of the subset of the pattern must
be removed. See and clean up method DEntity.addDElement().

37. Must improve the documentation of the classes: Document the classes and
interfaces using JavaDoc comments.

38. Must add a weight properties in the meta-model, in the class
PatternRootElement (and the methods required to deal with it).

39. The solution pattern no14 displayed for the Composite pattern on JHot-
Draw v5.1 does not show any inheritance links.

40. Rename the packages of the Ptidej UI Viewer Standalone AWT project
to make them consistent with those of the project Ptidej UI Viewer
Eclipse.

41. Remove all dependencies on java.awt (for exemple, Point and
Dimension) in the Ptidej, Ptidej UI, . . . projects. Introduce graphic-
framework independent classes?

42. It seems that the PatternIntrospector loading mechanism (using classes
TypeRepository and TypeLoader) works thanks to a lucky error. The di-
rectory given to the instance of ClassLoader contains the full path to the
class files; eg. C:/.../Original Examples/jtu/tests/composite2/.
The directory should only be the root directory; eg. C:/.../Original
Examples/. The package name gives the rest of the path; eg.
jtu.tests.composite2. Using the root directory and the package name,
it is possible to build the needed full path.

43. While implementing the Eclipse version of Ptidej, I encoun-
tered a difficult bug related to ClassLoader. When using Ptidej
in Eclipse, there are two parallel (and unrelated) instances of
ClassLoader (three, if we include the system class loader): Loader
[jtu.viewer.eclipse.ui.JTUViewerPlugin 1.0.0], from Eclipse;
and, patterns.util.ClassLoader@xxxx, from PatternsBox. In the
method PatternIntrospector.build(), the reflection API allows to call
the recognize() method on the different entities and elements found.
The methods Class.getMethod() and Method.invoke() perform, re-
spectively, the search and the invocation of the recognize() method.
These methods use the class PatternIntrospector and an instance
of class PatternIntrospector (through this). Thus, the instance of
ClassLoader used for loading the entities and elements, for searching and

25

invoking the recognize() method, and for loading and creating the pa-
rameters must be the same (or instances of NoSuchMethodException and
IllegalArgumentException are thrown). Two solutions are possible:

• A unique instance of class patterns.util.ClassLoader must be
used to load the class PatternIntrospector, Entity, Element. . .
Class patterns.util.ClassLoader must handle multiple search di-
rectories.

• Two instances of patterns.util.ClassLoader are used, one of them
being the parent of the other one, for delegation.

44. In the AWT version of Ptidej, implement preferences to memorize the
window position, the directories, the current source code, the abstract
model chosen and the concrete patterns loaded. . .

45. Refactor the class jtu.ui.solution.GroupSolution, does the
constructor really need an instance of class jtu.ui.Canvas,
jtu.ui.kernel.DPattern, and the associated visibility?

46. Remove all the unnecessary != null conditions and improve the code
performance in the graphic framework (package jtu.ui.kernel).

47. The method PAggregation.recognize() does not relate the field of type
Vector with the add() and remove() methods. Need to use CFParse to
ensure that the methods add() and remove() use the field of type Vector.

48. The computation of the Composite pattern on JUnit returns a solu-
tion that is a Decorator, not a Composite (i.e., Test, TestDecorator,
TestSetup, . . .).

49. The building of the solution is not too safe: If I try to load con-
straint results for the wrong project, Ptidej does not complain
but throws a not-so-friendly ArrayIndexOutOfBoundException.
I need to improve the error management for the method
SolutionBuilder.getSolutions(Properties, Pattern)

50. Clean up the PropertyChangeEvent and VetoableChangeListener
mechanisms. In particular, make consistent the methods of class Pattern
and PatternRootElement.

51. Externalize strings and translate them into French, Spanish. . .

52. Improve the installer to change the absolute paths of the .ptidej project
files according the the installation location.

53. Include Hervé Albin-Amiot’s new algorithm for container-like aggregation
relationship detection.

26

54. The relationship recognition mechanism should distinguish between input
and output relationships (respectively, parameters and return types) and
also should include the number of chained messages (to enforce the Law
of Demeter).

55. Memorize in the constraint domain which entities are abstract, concrete,
or interface, to check if the root of a class hierarchy are abstract or not.

56. Remove the backward link between instances of classes PEntity and
DEntity in class jtu.ui.kernel.Pattern.

57. Remove the link between constituents in the UI framework and con-
stituents in the meta-model.

58. Class InheritanceClusterLayout needs some heavy refactoring!

59. The jtu.solution.test.distorted.Mediator unit test highlights a dif-
ference between the AC4 algorithm (right, the solutions and only the
solutions) and the custom algorithm (wrong, too many solutions, the ex-
planations for removing values are erroneous). The custom algorithm must
be fixed.

60. Improve the user interface by giving feedback to the user on what is
happening (loading program architecture, building graphic representation,
solving constraints. . .)

61. The method Misc.isPrimtiveType(String) only works for Java types,
it does not work for class file types.

62. For some reason, when exporting Java AWT v1.3.1 as domain with the
AC4 constraint domain generator, the generator loops.

63. Distinguish constructors from methods to add more flexibility to the meta-
model.

64. The Ptidej UI project references the PDL project because it
needs to know about the Pattern class to build instances of the
GroupSolutionPattern class. I should remove this reference, that would
be more clean.

65. In the CombinatorialAutomaticSolver, the dynamically-created prob-
lems are always configured to show all variables. They should only show
the variable defined in the original problem by the user.

66. The mechanism used to handle constraints of lesser importance should be
externalized and made explicit when posting the constraints. (It should
not be embedded in the constraint definitions.)

27

67. Claire’s garbage collector loops when solving the knowledge distance test
problem on a subset of JUnit with the combinatorial automatic solver.
This is a serious bug in the GC that prevents the detection of interesting
stuff!

68. I should refactor the PtidejSolverConstraintGenerator to use method
createConstraint() everywhere (including for ignorances, inequalities,
and inheritances).

69. The VisitorRepository should use the
TypeLoader.loadSubtypesFromDir() method!

70. Link ConstraintResultsFrame through the extension mechanism.

71. The Representation class needs a better name!

72. I should implement a better layout algorithm, maybe one based on the
extended Sugiyama algorithm developped by Holger Eichelberger at the
Bayerishe Julius-Maximilians-Universität Würzburg.

73. Improve the integration of Ptidej as a plug-in within Eclipse!

74. When an entity is selected in the class diagram, it should be possible (via
a popup or something) to open the corresponds Java file.

75. Implement JUnit tests for the ExtraInformationProcessor class!

76. I should clearly distinguish between models (interclass- and design-levels)
and patterns. This is important for the sake of explanations in my Ph.D.
thesis!

77. I must check whether I really do not need to override the clone() method
in class Constituent.

78. When loading concrete patterns, I should create an instance of the
DesignLevelModel and add to it the proper entities, pattern models, and
elements, instead of having group solution.

79. Since the last round of refactorings (where I introduced the
AbstractModel, AbstractLevelModel, and PatternModel
classes), some methods are not consistent, for exemple, method
jtu.solution.SolutionGenerator.getSolutions(String,
PatternModel, AbstractModel, int, int) should be
jtu.solution.SolutionGenerator.getSolutions(String,
PatternModel, AbstractLevelModel, int, int).

80. Improve the feedback mechanism in the Eclipse plug-in when selecting
entities or micro-architectures in the Ptidej view and when selecting item
in the package view.

28

81. In Ptidej Solver, the partial order among constraint should be explicit
and it should be possible to limit the automated constraint relaxation to
a certain type of constraint.

82. When the maintainer puts back a constraint previously relaxed, I should
remove the successors of this constraint that have been added!

83. Improve the PercentLayout to enable min width and min height (for the
button panel of Ptidej).

84. Rename method of GraphModel to be consistent.

85. The metamodel.util.Misc.isArrayOrCollection() method uses the
Class.forName() method. It dramatically slows down loading projects.

86. The metamodel.util.TypeLoader.loadSubtypeFromFile() method cre-
ates (too?) many instances of com.ibm.toad.cfparse.ClassFile. This
method needs improvements!

87. Rename methods, such as getDHierarchies() to be consistent.

88. Improve the jtu.ui.layout.InheritanceClusterLayout.doLayout()
method to save up memory!

89. Improve the management of property to save up memory!

90. Rename the packages to replace jtu (former “Java-To-UML”) with ptidej,
to match the package names in Caffeine.

91. There is a mismatch between the Visitor interface, its implementations,
and the use that is made of them: Most visitors are called from the UI
through the UI-extension mechanism and thus use UI-related information,
such as:

if (!(targetEntity instanceof Ghost)
|| (this.visibleElements

& VisibilityElement.GHOST_ENTITIES_DISPLAY)
== VisibilityElement.GHOST_ENTITIES_DISPLAY) {

Maybe there should be two visitors: One to visit models of the meta-
model, one to visit model of the graph model. All visitors called from the
UI and using UI-related information should implement the visitor on the
graph model. These visitors methods would be called only if the related
information is shown in the UI, such saving up in complexity!

92. Replace any ‘/’ with File.separatorChar.

29

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley,
1st edition, 1994.

[2] Object Technology International, Inc. / IBM. Eclipse platform – A universal
tool platform, July 2001.

30

